
Foundations of
Computer Science

Functions and Conditionals

Golden Rules for Problem Solving

• Analyze the Problem

• Work out Concrete Examples; Make note of
boundary cases

• Brainstorm about the Problem

What is a function?

my own function!

def dbl(x):

""" returns double its input, x """

return 2*x

Functioning in Python

Comments

They begin with #

keywords

def starts the function

return stops it immediately
and sends back the return value

Docstrings

(1) describes overall what the function does, and

(2) explains what the inputs mean/are

They become part of python's built-in help system!
With each function be sure to include one that

Some of Python's baggage…

my own function!

def dbl(x):

""" returns double its input, x """

print ("Doubling input ", x)

return 2*x

Essential Definitions and Rules

(do memorize)

comment

docstring
function header

Function
body

parameter (also called argument)

Indentation: All the lines in the function body are indented from the function
header, and all to the same degree

my own function!

def dbl(x):

""" returns double its input, x """

print ("Doubling input ", x)

return 2*x

Flow of Execution

Function definitions
(including calls to
other functions)

Function calls>>> dbl(21)

When you call a function, Python executes the function starting at the
first line in its body, and carries out each line in order (though some
instructions cause the order to change… more soon)

my own function!

def dbl(x):

""" returns double its input, x """

print "Doubling input ", x

return 2*x

Parameters are special variables

>>> dbl(21)

When you call a function, the value you
put in parenthesis gets put into the
“box” labeled with the name of the
parameter and is available for use
within the function.

x

my own function!

def times(x, y):

""" returns x times y """

print "Multiplying ", x, "and", y

return x*y

Multiple parameters are allowed

>>> times(21, 2)

When you call a function, the values you put
in parenthesis gets put into the “boxes”
labeled with the names of the parameters
(in the order in which they are listed)

x

y

my own function!

def fortyTwo():

""" returns 42 """

return 42

No parameters is also allowed

>>> fortyTwo

As much as I like 42, I
don’t quite like this…

my own function!

def fortyTwo():

""" returns 42 """

return 42

(But you still need parentheses)

>>> fortyTwo()

Ahh(), much better

my own function!

def times(x, y):

""" returns x times y """

print ("Multiplying ", x, "and", y)

return x*y

You can also pass values via variables

>>> a = 21

>>> b = 2

>>> times(a, b)

When you call a function, the values you put
in parenthesis gets put into the “boxes”
labeled with the names of the parameters
(in the order in which they are listed)

x

y

a

b

my own function!

def times(x, y):

""" returns x times y """

print ("Multiplying ", x, "and", y)

return x*y

You can also pass values via variables

>>> a = 21

>>> b = 2

>>> times(b, a)

When you call a function, the values you put
in parenthesis gets put into the “boxes”
labeled with the names of the parameters
(in the order in which they are listed)

x

y

a

b

my own function!

def times(x, y):

""" returns x times y """

print ("Multiplying ", x, "and", y)

return x*y

Return gives back a value, which you

store

>>> a = 21

>>> b = 2

>>> c = times(b, a)

When you call a function, the values you put
in parenthesis gets put into the “boxes”
labeled with the names of the parameters
(in the order in which they are listed)

x

y

a

b

c

my own function!

def times(x, y):

""" returns x times y """

print ("Multiplying ", x, "and", y)

return x*y

Warning!

>>> x = 21

>>> y = 2

>>> z = times(y, x)

When you call a function, the values you put
in parenthesis gets put into the “boxes”
labeled with the names of the parameters
(in the order in which they are listed)

x

y

x

y

z

my own function!

def times(x, y):

""" returns x times y """

print ("Multiplying ", x, "and", y)

return x*y

Variable scope

>>> x = 21

>>> y = 2

>>> z = times(y, x)

When you call a function, the values you put
in parenthesis gets put into the “boxes”
labeled with the names of the parameters
(in the order in which they are listed)

x

y

x

y

z

The scope of a variable is where it
is defined to have a particular
value. Each time a function is
called in Python, it gets a fresh
copy of its variables (including
parameters). Their scope is the
body of the function in that call
only.

times scope

shell scope

Making choices: bool(ean) values

>>> 42 == 41

0 (i.e. False)

>>> 42 < 43

1 (i.e. True)

>>> not 42 > 42

1

>>> not 42 >= 42

0

>>> x = 42 != 42

>>> x

???

Huh??

What is the value of x?
A. True (i.e. 1)
B. False (i.e. 0)
C. 42
D. Error

Boolean expressions can be complex

>>> x = 42

>>> y = 42

>>> x > 42 and y == 42

>>> x > 42 or y <= 42

>>> not x < 42 and y == 42

Making choices: conditional
statements
def sameLastDigit (num1, num2):

""" Return True if integers num1 and num2

end in the same digit, else False """

if (num1%10) == (num2%10):

return True

else:

return False

Let’s have some fun!

Ooops!

We can fix it!

def halve(x):

""" returns half its input, x """

return div(x, 2)

def div(y, x):

""" returns y / x """

return y / x

Functions can call Functions!!

>>> halve(84)

When in doubt, draw it out!

return != print

>>> dbl(21)

>>> dbl(21) * 2

def dbl(x):

""" dbls x? """

return 2*x

def dblPR(x):

""" dbls x? """

print 2*x

>>> dblPR(21)

>>> dblPR(21) * 2

What is the difference between these?
A. No difference—they will behave the same way
B. The one of the left causes an error, while the one of the right does not
C. The one on the right causes and error, while the one on the left does not
D. The one of the right will print values, while the one on the left will not, but

neither will cause an error

return != print

>>> ans = dbl(21)

def dbl(x):

""" dbls x? """

return 2*x

def dblPR(x):

""" dbls x? """

print 2*x

>>> ans = dblPR(21)

return yields the function call's value …

print just prints stuff to the screen...

… which the shell will print!

Variables

def convertFromSeconds(s): # total seconds

""" convertFromSectons(s): Converts an

integer # of seconds into a list of

[days, hours, minutes, seconds]

input s: an int

"""

seconds = s % 60 # leftover seconds

m = (s / 60) # total minutes

minutes = m % 60 # leftover minutes

h = m / 60 # total hours

hours = h % 24 # leftover hours

days = h / 24 # total days

return [days, hours, minutes, seconds]

This program uses
variables constantly!

